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ABSTRACT: Each digital camera has an intrinsic fingerprint that is unique to each camera. This device fingerprint can be extracted from an
image and can be compared with a reference device fingerprint to determine the device origin. The complexity of the filters proposed to accomplish
this is increasing. In this note, we use a relatively simple algorithm to extract the sensor noise from images. It has the advantages of being easy to
implement and parallelize, and working faster than the wavelet filter that is common for this application. In addition, we compare the performance
with a simple median filter and assess whether a previously proposed fingerprint enhancement technique improves results. Experiments are performed
on approximately 7500 images originating from 69 cameras, and the results are compared with this often used wavelet filter. Despite the simplicity
of the proposed method, the performance exceeds the common wavelet filter and reduces the time needed for the extraction.
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Digital photography was adopted in a short time to replace its
analog counterpart in the last two decades. Along with this transi-
tion came the easy and widespread usage of the Internet, making it
possible to share and copy these images without leaving behind
any traces. In some situations, however, the question of the image
source can be of paramount importance in a forensic context.

An obvious example is whether an image was downloaded or
actually produced by a suspect in a child pornography case.
Another possibility is to test testimonies and confessions, for exam-
ple, whether a suspect was near a crime scene if photographs or
videos were found on his mobile phone or camera. As a final
example, the question of the origin of a stolen camera found at a
suspect’s residence, for example in a violent robbery, may be
solved if the owner has some reference material available (e.g., on
his computer).

There has been much effort in the forensics community to solve
the question of camera identification based on the images a camera
produces. Roughly, there are two approaches. The first is mostly a
camera classification scheme based on statistical information from
the images. This approach (e.g., see [1] and the references therein)
uses Support Vector Machines (SVMs), to classify the images
based on a large number of features. Examples of these features
are Binary Similarity Measures in which the tell-tale patterns from
the bitplanes are used as a characteristic of a camera brand ⁄model,
Image Quality Measures in which features such as image sharpness

and other visual differences are used, Higher-Order Wavelet Statis-
tics in which characteristics about the noise are exploited, demosa-
icking artifacts in which the Color Filter Array interpolation
algorithm is used as a distinctive characteristic, and more (1).
Although the performance can be quite good, it has the disadvan-
tage that the SVM needs to be trained properly, which can take
quite a lot of time as feature extraction for high-resolution images
is computationally expensive, especially when the number of fea-
tures is large. The potential advantage is that spatially transformed
images may still be identified (1)—if the SVM is trained properly.
In (2), an alternative approach is presented. As image sensors are
monochrome devices, they cannot differentiate between different
colors. To produce a color output, a Color Filter Array is placed on
the top of the sensor. With this addition, each pixel absorbs light
with a wavelength range corresponding to either the red, green, or
blue colors (in the common Bayer filter array). To produce a full-
color image, an interpolation step is needed. Different camera
brands and models often use different interpolation algorithms to
accomplish this. In this way, it is possible to perform camera clas-
sification by estimating the interpolation algorithm that has been
used inside the camera. Likewise, in (3), singular value decomposi-
tion is used to detect the linear dependency in rows ⁄ columns owing
to the interpolation artifacts.

The second approach does not rely on these statistically signifi-
cant deviations, but instead uses characteristics that individualize
each sensor. When digital cameras started to gain popularity, CCD
and CMOS sensors contained defects (dead or hot pixels). These
defects in turn created a unique pattern that could help linking pho-
tographs and their sensors (4). Owing to the possible absence of
these defects in modern sensors, the forensics community started
looking at the individual deviation of each pixel (5). This is the
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photo-response nonuniformity (PRNU) and is based on the charac-
teristic fingerprint the camera unintentionally leaves behind in each
image it produces. The method of operation relies on the fact that
each pixel has a slightly different response to the same amount of
light, creating a characteristic pattern of deviations. The presence of
this fingerprint depends among others on the intensity, as it is mul-
tiplicative. Images that contain high-frequency textures or large
dark areas may be difficult to identify. This is due to information
loss occurring most often in JPEG (Joint Photographic Experts
Group, a popular image compression format) compressed images in
high-frequency textures and the absence of the pattern in dark
areas. In general, however, this pattern is quite robust against com-
pression, and under certain conditions even works for videos from
YouTube (6). However, spatial transformations desynchronize the
PRNU pattern (e.g., cropping, rotation, or scaling) and make identi-
fication harder or near impossible. When images are cropped
and ⁄or scaled, identification is still possible as was shown in (7).

The techniques used to denoise the images are becoming more
and more advanced (see, e.g., [8]), and with this, the computational
complexity is increasing. Instead of using the most advanced
method to denoise the images, we found an efficient multiscale
algorithm (9) that is very easy to implement.

This study is organized as follows. In the next section, we will
expand on a few general things about the method of identification,
and briefly explain the algorithm used to extract the PRNU pattern
from the images. Subsequently, after explaining the experimental
conditions in the third section, we will use this algorithm to mea-
sure the performance in the fourth section. After a discussion in the
fifth section, the study is concluded in the last section.

Methods

The origin of the PRNU lies in construction and device no-
nidealities. Specifically, this means that when all pixels are
equally illuminated, the output from these pixels will be slightly
different. These variations are owing to nonuniform sizes of the
active area of the pixels or nonuniform potential wells resulting
in a different spectral response. Hence, some pixels may collect
more photons as a result of a larger size of the photo transistor
or absorb more long-wavelength photons as its potential well
may be deeper.

There are two opposing trends making and breaking this scheme:
on the one hand, owing to improving manufacturing standards, the
presence of the PRNU may decrease as technology advances. On
the other hand, the resolution increases as well, resulting in smaller
pixels and relatively larger deviations.

As put forth in the Introduction, the camera identification scheme
relies on the extraction of the characteristic digital fingerprint from
photographs. Although this pattern is often imperceptible from the
image itself, it is possible to extract it from the image with
advanced filters. To conclude that a certain image was made with
a certain camera, we need to compare the pattern from the ques-
tioned image with a reference pattern of the suspected camera. In
general, extracting the pattern from an image is easiest when the
image contains no textures or edges. Furthermore, as the PRNU is
multiplicative (its effect increases when the illumination increases),
it is preferred to use images that are reasonably illuminated (not
saturated). These kinds of images are called flatfield or reference
images and can be made by photographing out-of-focus bright skies
or flat surfaces such as desks. To calculate the reference pattern of
a camera, a large number (we used 50) of these images are made,
after which the patterns from each single image are extracted and
averaged. By averaging these individual patterns, temporary

fluctuations (e.g., photon shot noise) are averaged out, thus obtain-
ing the reference pattern. In addition to flatfield or reference
images, there are regular images (typically including actual scene
content) to which we refer to as ‘‘natural images.’’ Now, the finger-
print from a questioned image of unknown origin is compared with
the reference pattern, often simply by calculating Pearson’s correla-
tion. A high correlation suggests a (linear) relationship between
these two seemingly random patterns. This method works reliably
even when large numbers of images and cameras are used. In (10),
the results of a large-scale experiment (over one million images,
spanning almost 7000 different cameras) are reported with very
low false rejection rates (FRR) and false acceptance rates (FAR).

In actual casework, we prefer to use a large number (at least 10)
of reference cameras of the same make ⁄model to exclude the possi-
bility of matching based on class-specific characteristics. Specifi-
cally, it is possible that class characteristic patterns (e.g., from CFA
interpolation, JPEG compression artifacts) may be present in the
extracted pattern (11). These characteristic patterns may be specific
to a class of cameras, for example, the brand and ⁄ or model. Hence,
in these cases, an elevated correlation value does not signify identi-
fication, but merely shows a different relationship between the two
patterns exists. Using multiple reference cameras, we can exclude
the possibility of matching based on just these characteristics.
These considerations are especially important with low-quality
(high compression) images and ⁄ or videos.

Algorithm

We will now briefly explain the algorithm to extract the PRNU
pattern from images. For a more in-depth explanation, we refer to
the original publications (9,12). As put forth in the previous para-
graph, extracting the sensor noise P from the image is carried out
by simply subtracting a denoised (filtered) version F(I) from the
original image I:

P ¼ I � FðIÞ ð1Þ

An image may consist of various homogeneous and inhomoge-
neous areas. Intuitively speaking, there may be continuous (smooth)
areas of approximately the same intensity and discontinuous areas
(textures, edges) with variable intensities. In this framework, we
can understand the anisotropic diffusion algorithm (9) by first con-
sidering the continuity equation, in which we explicitly assume that
the intensity I(x, y, t) is a conserved quantity:

@Iðx; y; tÞ
@t

¼ �, � Jðx; y; tÞ ð2Þ

in which J(x, y, t) denotes the flux of the image intensity, and the
whole right-hand side of the equation denotes the divergence of the
flux. The t-variable in I(x, y, t) signifies the multiscale approach;
each t signifies a different scale. Hence, this equation states that
the image intensity is simply redistributed in the image and the rate
at which this happens equals the negative divergence of the flux. In
other words, there is a redistribution of the pixel values in close
proximity of each other.

The flux, in turn, can be described by:

J ¼ �cðx; y; tÞ,Iðx; y; tÞ ð3Þ

This states that the high image intensity values ‘‘flow’’ to lower
intensity values, depending on the gradient of the image, and the
diffusion coefficient c. Combining these two equations, we find the
anisotropic diffusion equation (9):
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@Iðx; y; tÞ
@t

¼ r � ðcrIÞ ¼ cr2I þrc � rI ¼ @

@x
ðc @I

@x
Þ þ @

@y
ðc @I

@y
Þ

ð4Þ

Depending on the (local) diffusion coefficient c, the image is
denoised. If c(x, y, t) = 1 8(x, y), then we can see that

Iðx; y; tÞ ¼ I0ðx; y; tÞ � Gðx; y; tÞ; ð5Þ

Gðx; y; tÞ ¼ 1
2pt

e�ðx
2þy2Þ=2t ð6Þ

is a valid solution; this denotes isotropic diffusion. However, isotro-
pic diffusion results in the blurring of edges and textures which we
want to avoid because this will lead to image residue in the PRNU
pattern. Therefore, optimizing the denoising comes down to finding
suitable diffusion coefficients. The authors (9) propose to use the
image gradient as a parameter to control the diffusion. This gives
rise to the anisotropic diffusion (a different diffusion parameter in
each direction).

Perona and Malik (9) chose to use the four nearest neighbors,
and this was later extended to the eight nearest neighbors in (12).

Using the difference quotients as an approximation of the deriva-
tives (4), we find that (9)

@Iðx; y; tÞ
@t

¼ cNDIN � cSDIS þ cEDIE � cWDIW ð7Þ

where D denotes nearest neighbors differences. For example,
DIN denotes the difference between the current pixel and the
pixel above it (‘‘North’’), and cN denotes the diffusion parameter
for this direction. Intuitively, when the image I is smooth, the
diffusion parameter should be close to 1: This approximates iso-
tropic diffusion (‘‘Gaussian blurring’’). On the other hand, when
the image contains textures the diffusion parameter will be
smaller to prevent edge distortion at boundaries. After the inten-
sity values have been redistributed, the image is adjusted to
reflect the new intensities:

Itþ1 ¼ It þ kðcNDIN � cSDIS þ cEDIE � cWDIWÞ ð8Þ

where k is the integration constant (0 £ k £ 1 ⁄3 for four neigh-
bors). To obtain the denoised image at a certain scale t, the image
at scale t-1 is denoised. The first scale can be obtained by denois-
ing the original image (scale 0). Finally, a small k gives a better
approximation of the original equation (4), but we will need more
iterations to denoise the image.

Adding the four diagonal neighbors results in

Itþ1 ¼ It þ kððcNDIN � cSDIS þ cEDIE � cWDIWÞ

þ 1
2
ðcNWDINW � cNEDINE þ cSEDISE � cSWDISWÞÞ

ð9Þ

with 0 £ k £ 1 ⁄ 7 (11). Note the factor ‰ owing to the larger dis-
tance to the diagonal pixel. Owing to this larger distance, this
pixel should have less influence on the pixel we are considering.
As we are applying the second derivative, this gives a factor of
‰.

The DIN term can be obtained from a simple convolution:

DIN ¼ I � g; g ¼
0 1 0
0 �1 0
0 0 0

0
@

1
A ð10Þ

and likewise for the other directions.
Finally, it is necessary to know where the diffusion needs to

occur and where not; that is, we need to have an edge estimate to
obtain the diffusion parameter. Perona and Malik (9) use the gradi-
ent of the image as the diffusion parameter. A small gradient
occurs where the area is homogeneous, which is where we want
the diffusion (hence a large diffusion parameter) to occur and vice
versa. They propose two different diffusion functions based on the
gradient:

cðx; y; tÞ ¼ expð�ðjDIj=KÞ2

cðx; y; tÞ ¼ 1

1þ ðjDIj=KÞ2
ð11Þ

The value for K is determined at each iteration. First, the gradient
of the whole image at the previous scale is calculated (at the first
scale, the original image is taken). After taking the absolute value of
this gradient, the histogram is calculated, and the value below which
90% of the intensity values occur is denoted as K. After a set number
of iterations, the denoised image F(I) is obtained.

After the filtered image F(I) has been calculated, the pattern is
obtained by subtracting this filtered image from the original image
(1). As rightfully noted in (11), artifacts in the pattern exist owing
to (class) characteristic CFA interpolation and JPEG compression.
These characteristic artifacts result in a similarity between two
otherwise unrelated patterns. We follow (11) by suppressing these
artifacts by subsequently subtracting the column and row averages
from the obtained pattern.

Although it may look complicated, this algorithm is very easy to
implement. In the Appendix, pseudo-code can be found. The con-
volutions are actually simple subtractions, and the other calculations
are all carried out pointwise, which means that this algorithm is
O(N). Finally, this approach makes it trivial to implement the algo-
rithm in parallel to take advantage of multicore processing (e.g.,
each convolution executed in a separate thread).

Experimental Settings

The algorithm was implemented in Matlab 2009b (http://
mathworks.com/), but no explicit multithreading was implemented.
Owing to its simplicity and the use of standard functions, the
amount of code is limited to approximately 50 lines. To compare
the performance of the wavelet algorithm (5), we did the same for
this algorithm. The Wavelab850 toolbox (13) was used for the lat-
ter algorithm. The improvements in (11) to reduce periodic arti-
facts, namely zero-meaning and wiener-filtering, were also
implemented. In (5), it was suggested that nondyadic images could
be processed by blocks. The advantage is that the memory needed
for calculating the PRNU pattern remains within boundaries. On
the other hand, processing nonoverlapping blocks results in bound-
ary effects. Instead, we adjusted the code from Wavelab850 to
allow for nonsquare nondyadic images. This significantly reduces
the overhead from overlapping blocks. The downside is that it uses
more memory than when (smaller) individual blocks are processed.
For comparison, we used the Daubechies wavelet as well as the
Coiflet wavelet and varied the denoising parameter r = 1–4. It
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would be advantageous to estimate the denoising parameter from
the image. Indeed, when an image is corrupted with White Gauss-
ian Noise, this can be done easily be transforming the image to the
wavelet domain and subsequently calculate the median in the high-
est-level subband (14). However, this does not work reliably in nor-
mal (uncorrupted) images, and hence, we use a fixed sigma.

For the anisotropic diffusion algorithm, we chose the first diffu-
sion function owing to its slightly better performance in our tests.
The number of scales was set to three, and k was fixed to 1 ⁄7. We
tested four as well as eight local neighbors.

Finally, we tested whether the work presented in (15) to reduce
the image residue in the PRNU pattern resulted in a better
performance, for both the wavelet method and the presented
method. This is accomplished by attenuating pixels that show a
very strong deviation in the PRNU pattern, as these pixels are
likely to originate from image content. The larger the magnitude of
the pixel in the PRNU pattern, the more it is attenuated.

The experiments were performed on an Intel Xeon E5410 2.3
GHz with 4GB of RAM (Intel Corp., Santa Clara, CA). We used
69 cameras for the comparison of three different brands comprising
seven different models and resolutions, as can be seen in Table 1.
In this table, the number of natural images is also presented. The
number of reference images used for the calculation of the refer-
ence patterns was 50 for each camera used.

For each camera, a number of natural images were made, rang-
ing from 50 to 150 per camera. The images were made inside and
outside the office, with a wide range of textures, details, and illumi-
nations (saturation was frequently present). Images were captured
in automatic setting, with digital zoom turned off.

To judge whether an image originates from a certain camera, the
correlation coefficient is used. It is defined in the usual way:

qðn;RÞ ¼ ðn� nÞðR� RÞ
jjn� njjjjR� Rjj

ð12Þ

where n is the PRNU pattern of the natural image, R is the refer-
ence pattern, and the bar above n and R denotes the average.

Results

A total of 7502 natural images were used to assess the perfor-
mance of both methods. For each model and method, we experi-
mentally determined the equal error rate (EER), defined as the
point where the FAR and FRR are equal.

In Table 2, the EER of the wavelet method (Daubechies wave-
let) are presented for r = 1–4, for each camera. Using a Coiflet
wavelet did not improve the result (on average, approximately 50%
higher EERs). On the basis of these results, it was decided to use
r = 2 (Daubechies) in the following comparisons.

In Table 3, the results are presented for both the wavelet method
and the proposed method (columns 1 and 2). For the Sony DSC-

S930 (Sony Corp., Tokyo, Japan), we see a dramatic rise of the
EER. Upon inspection, we see that the distribution of the correla-
tion values for the mismatching pairs (the correlation between an
image and a reference pattern from different cameras) has dramati-
cally shifted to higher values. This means that the patterns still con-
tain class-specific characteristics of the model ⁄brand camera.

Changing the number of scales ⁄ iterations did not significantly
improve the results. When random images were inspected, we real-
ized that most surfaces are locally approximately smooth or even
uniform in their intensity, owing to the Lambertian reflectance
property. Specifically, this means that a surface has the same
brightness irrespective of the angle of view (isotropic luminance).
Therefore, it was suggested that applying a median filter would do
the initial denoising, after which the anisotropic diffusion was again
applied. This median filter should help to reduce the amount of
(small) impulse noise. It works by sliding a 3 · 3 window over
each pixel and substituting the center pixel value by the median of
the sorted nine values inside the window. Note that this median fil-
ter was only applied to the natural images.

Results for this combined approach are presented in the last col-
umn of Table 3, in which we see the improved sensitivity of the
method. As the median filter only performs local operations, it only
results in a time penalty of approximately 10% with respect to the
proposed algorithm. Interestingly, using only four local neighbors
instead of eight resulted in the best performance.

When this median filter was applied for the wavelet method
results did not improve, but gave on average a slight performance
penalty. Finally, we also attempted to use the median filter for the
PRNU extraction. The performance was much worse than the other
two filters, as can be seen in Table 4.

TABLE 1—Overview of the number of cameras used and their
specifications.

Brand Model Resolution (MP) Cameras Images

Samsung Digimax S500 2560 · 1920 (5) 10 998
Samsung Digimax L70 3072 · 2304 (7) 10 1060
Canon PowerShot A430 2272 · 1704 (4) 10 1050
Canon PowerShot A630 3264 · 2448 (8) 10 500
Sony CyberShot DSC-S500 2816 · 2112 (6) 9 900
Sony CyberShot DSC-S800 3264 · 2448 (8) 10 1494
Sony CyberShot DSC-S930 3648 · 2736 (10) 10 1500

TABLE 2—Performance measures for the wavelet method.

Brand Model r = 1 r = 2 r = 3 r = 4

Samsung Digimax S500 0.50 0.50 0.40 0.57
Samsung Digimax L70 0.00 0.00 0.00 0.00
Canon PowerShot A430 1.14 0.86 0.76 0.57
Canon PowerShot A630 0.00 0.00 0.00 0.00
Sony CyberShot DSC-S500 0.00 0.33 1.22 1.89
Sony CyberShot DSC-S800 0.47 0.47 0.40 0.40
Sony CyberShot DSC-S930 10.8 4.93 4.73 4.23

Weighted Average 2.48 1.30 1.33 1.31

Equal error rates (percentage) for the wavelet method (Daubechies wave-
let) for different denoising parameters. From this, it was concluded that
r = 2 gave the best performance (lowest number of errors).

TABLE 3—Performance measures for both methods.

Brand Model EERw (%) EERad (%) EERad’ (%)

Samsung Digimax S500 0.50 0.20 0.20
Samsung Digimax L70 0.00 0.00 0.00
Canon PowerShot A430 0.86 0.42 0.09
Canon PowerShot A630 0.00 0.00 0.00
Sony CyberShot DSC-S500 0.33 0.00 0.00
Sony CyberShot DSC-S800 0.47 0.50 0.47
Sony CyberShot DSC-S930 4.93 11.0 0.60

Weighted Average 1.31 2.38 0.25

EER, equal error rate.
EERw denotes the equal error rate for the wavelet method, and EERad

denotes the equal error rate for the anisotropic diffusion method. Finally,
EERad’ denotes the equal error rate for the adjusted method, that is, the
anisotropic diffusion method followed after the initial median filter (see the
text).
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Reducing the image residue as presented in (15) only improved
the results very slightly for both the wavelet method and the pro-
posed method. As noted in (15), this is expected, as the perfor-
mance gain is mainly beneficial for low-resolution images. This
shows that both methods are already sufficiently capable of dis-
criminating between image features and noise. Interestingly, when
the method was applied to the median filter, results improved dra-
matically, as seen in Table 4.

As a final assessment of the discriminative ability of the method,
we also calculated the correlation between the PRNU patterns from
each natural image and the reference PRNU pattern from each of
the 69 cameras. To circumvent the problem of differing resolutions
from the cameras and to speed up the extraction, we limited the
pattern size to 1536 · 1536. In this way, 7502.68�5.1 · 105 mis-
matching correlations and 7502 matching correlations were calcu-
lated. This resulted in an EER of 2.81% for the wavelet method
and an EER of 0.50% for the proposed method (including the med-
ian filter). The results from this experiment are summarized in
Fig. 1. In this figure, we present the detection error trade-off (DET)
curve, a plot (more common in biometrics) representing the false-
positive rate versus the false-negative rate on log–log scales. This
allows a better distinguishing between the relative errors than the

common receiver operating characteristic curve. From this figure,
we conclude that the proposed method is better suited for camera
identification for all but the highest FARs. Specifically, at a FAR
of 10)3, the FRR for the proposed method is 1.4 · 10)2, while the
FRR is 0.27 for the wavelet method. At a FAR of 10)2, the FRRs
are 3.33 · 10)3 and 0.135, respectively.

A possible reason for the better performance of the proposed
method is that the denoising only takes place in the immediate
vicinity of each pixel. In contrast, for the wavelet method, the
denoising is carried out in the wavelet domain in four levels. Espe-
cially in the larger ⁄ coarser scales, the denoising may quickly be
too abrupt and ⁄ or cover a region that is too large.

Discussion

We inspected 40 images (�0.5%) which were responsible for
the lowest correlations in the match distribution, for both methods.
More than 50% of these images were problematic for both meth-
ods. Upon inspection, we found that there were different sources of
these problems: highly detailed textures (sand, gravel, leaves, twigs
of trees, and fabrics), large dark or saturated areas (in general,
images with large contrasts such as trees in snow), and elevated
noise (higher ISO values).

In the histogram, it was observed that the distribution of the cor-
relation values for nonmatching pairs (between the PRNU pattern
from a natural image and a nonmatching reference pattern) is much
narrower for the proposed method. On the other hand, the matching
distributions are comparable, with the distribution for the proposed
method skewed to the left.

It was suggested in (5) that the correlation values for the mis-
matching pairs for the wavelet method could be described be a
generalized Gaussian distribution. However, we found that the
logistic distribution better described the distribution of the proposed
method because of its slightly wider tails:

f ðxjl;xÞ ¼ expð�ðx� lÞ=xÞ
xð1þ expð�ðx� lÞ=xÞÞx ð13Þ

where f denotes the probability density function. In this formula, l
denotes the location and x denotes the scale of the density

FIG. 2—Probability density functions for matching (lognormal distribu-
tion) and mismatching (logistic distribution) data for the proposed method.
There is a certain amount of overlap, but the separation is clear.

TABLE 4—Equal error rate (EER) for the median filter with and without
reducing the image residue (12).

Brand Model EERm (%) EERm’ (%)

Samsung Digimax S500 12.3 0.86
Samsung Digimax L70 41.6 35.4
Canon PowerShot A430 12.0 0
Canon PowerShot A630 50.9 0.89
Sony CyberShot DSC-S500 38.0 0.09
Sony CyberShot DSC-S800 41.0 1.50
Sony CyberShot DSC-S930 35.6 1.13

Weighted Average 32.4 5.71

EERm denotes the equal error rate for extracting the photo-response non-
uniformity with the median filter, and EERm’ denotes the equal error rate
for when the image residue reduction is applied to the median filter.
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FIG. 1—Detection error trade-off (DET) curve for the comparison of all
images with all reference patterns for both methods. We see the improved
performance (lower false acceptance and rejection rates) for all but the
highest false acceptance rates.
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function. These parameters can be estimated by nonlinear regres-
sion. The best fit, however, comes from a nonparametric model
(e.g., kernel density estimation).

On the other hand, the correlation values for the matching pairs
could be best described by a different type of distribution, namely
by the lognormal distribution:

f ðxjl; rÞ ¼ 1

xr
ffiffiffiffiffiffi
2p
p exp �ðln x� lÞ2

2r2

 !
ð14Þ

as the data were strongly skewed to the left. In this formula, l
and r denote the mean and standard deviation of ln(x), respec-
tively. In Fig. 2, the probability density function is presented for
these suggested distributions. Finally, in Fig. 3, the histogram of
correlation values is shown for the Wavelet method. It can be
seen that the distribution is narrower for the proposed method,
resulting in the better performance (lower EER). Upon inspec-
tion, we found that the wider tails in the wavelet distribution
are almost exclusively owing to its bad performance on the
Sony DSC-S930. Without this camera, the EER would be
approximately 1.3%.

Conclusion

We have presented an alternative technique that can be used for
the efficient extraction of PRNU patterns from images. The advanta-
ges are the simplicity of implementation, the reduced computation
time (approximately 30% reduction), and the improved performance.

In the near future, this approach will be implemented in our
open source program for camera comparison, NFI PRNUCompare
(16).
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Appendix

Step 1 Set the maximum scale n (default: 3) and which diffusion
function (Eq. [11]) should be used. Set k = 1 ⁄ 3 and define the
matrices g needed for convolution (eight in total):

0 1 0
0 �1 0
0 0 0

0
@

1
A; 0 0 0

0 �1 1
0 0 0

0
@

1
A; 0 0 0

0 �1 0
0 1 0
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1
A; 0 0 0

1 �1 0
0 0 0

0
@

1
A

Read the input image I. Apply a median filter to this image.

FIG. 3—Histogram for the correlation values obtained from the wavelet
method. We see the tails of the mismatching distribution is wider than in
Fig. 2. This is mainly due to the large number of false positives from a
single camera (Sony DSC-S930).
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Step 2 Set It = I, It2 = I, k = 1
repeat n times:
Calculate the convolution of It with the first matrix g and store

this in DI. Subsequently, calculate the value of K such that 90% of
the intensity values in the gradient image DI occur below this
value. Calculate c (Eq. [11]), depending on the diffusion function
chosen. Set It2 = It2 + kc DI.

Clear variables 8I and c. Repeat for the other three matrices. Set
It = It2 and k = k + 1

Step 3 Subtract the denoised image from the input image and
zero-mean (9) the result M, as follows. First, subtract the column
averages of M from M, giving M’. Then, subtract the row averages
of M’ from M’. This is the PRNU pattern.
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